Correct targeting of the bean storage protein phaseolin in the seeds of transformed tobacco.

نویسندگان

  • J S Greenwood
  • M J Chrispeels
چکیده

The storage protein phaseolin accumulates during seed development in protein bodies in cotyledons of the common bean Phaseolus vulgaris. Hall et al. (In L Van Vloten-Doting, TC Hall, eds, Molecular Form and Function of the Plant Genome, 1985 Plenum Press, In press) recently reported the expression of a gene coding for phaseolin and the accumulation of phaseolin protein in developing seeds of tobacco plants regenerated from transformed callus cells. The protein did not accumulate in other organs of the plants. Mature seeds from normal and transformed tobacco plants were obtained and the subcellular distribution of phaseolin in the seeds was examined using both light and electron microscopic immunocytochemical methods. Phaseolin was found in six of seven transformed tobacco embryos examined, but was present in only one endosperm of five. When present, phaseolin was located exclusively in the protein bodies of the embryonic and endospermic cells. Furthermore, phaseolin was restricted solely to the amorphous matrix of the protein bodies and was excluded from the globoid and proteinaceous crystalloid components of these organelles. The subcellular location of phaseolin in seeds from transformed tobacco plants is similar to that seen in mature seeds of the common bean indicating that in the transformed cells the protein is targeted to the right subcellular compartment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability.

Phytohemagglutinin is a glycoprotein that accumulates in the protein storage vacuoles of bean seeds. The mature glycoprotein has a high-mannose and a complex glycan. We describe here the use of site-directed mutagenesis and expression of the mutated genes in transgenic tobacco to study the role of glycans in intracellular targeting. The reading frame for phytohemagglutinin-L was mutated so that...

متن کامل

Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide.

Phaseolin, one of the major legume proteins for human nutrition, is a trimeric glycoprotein of the 7S class that accumulates in the protein storage vacuoles of common bean. Phaseolin is cotranslationally introduced into the lumen of the endoplasmic reticulum; from there, it is transported through the Golgi complex to the storage vacuoles. Phaseolin is also transported to the vacuole in vegetati...

متن کامل

Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species.

Protein storage vacuoles (PSVs) are specialized vacuoles devoted to the accumulation of large amounts of protein in the storage tissues of plants. In this study, we investigated the presence of the storage vacuole and protein trafficking to the compartment in cells of tobacco (Nicotiana tabacum), common bean (Phaseolus vulgaris), and Arabidopsis leaf tissue. When we expressed phaseolin, the maj...

متن کامل

A comparative study of the role of the major proteinases of germinated common bean (Phaseolus vulgaris L.) and soybean (Glycine max (L.) Merrill) seeds in the degradation of their storage proteins.

Two types of cysteine proteases, low-specificity enzymes from the papain family and Asn-specific from the legumain family are generally considered to be the major endopeptidases responsible for the degradation of seed storage proteins during early seedling growth. The action of the corresponding enzymes (CPPh1 and LLP, respectively) from common bean (Phaseolus vulgaris L.) on phaseolin (the com...

متن کامل

Lima bean (Phaseolus lunatus) seed coat phaseolin is detrimental to the cowpea weevil (Callosobruchus maculatus).

The presence of phaseolin (a vicilin-like 7S storage globulin) peptides in the seed coat of the legume Phaseolus lunatus L. (lima bean) was demonstrated by N-terminal amino acid sequencing. Utilizing an artificial seed system assay we showed that phaseolin, isolated from both cotyledon and testa tissues of P. lunatus, is detrimental to the nonhost bruchid Callosobruchus maculatus (F) (cowpea we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 1985